

 I
L
I2

X
X

X
 Q

U
IC

K
 S

T
A

R
T

 G
U

ID
E

ILI2xxx Quick Start Guide

Linux implementation

Rev.1.0

2020-08-16

© 2020 Riverdi Page 2 of 10 www.riverdi.com

Linux implementation

ILI2XXX Quick Start Guide Rev.1.0

REVISION RECORD

REVNO.

REVDATE

CONTENTS

REMARKS

1.0 2020-08-16 Initial Release

CONTENTS

REVISION RECORD.. 2

CONTENTS .. 2

 INTRODUCTION ... 3

 HARDWARE AND SOFTWARE SETUP .. 4

 COMPILE AND RUN DEMO EXAMPLE ... 5

 ADJUST LIBRARY AND DEMO FOR OTHER LINUX PLATFORMS .. 6

4.5.1 DATA READOUT .. 9

 FURTHER STEPS .. 10

© 2020 Riverdi Page 3 of 10 www.riverdi.com

Linux implementation

ILI2XXX Quick Start Guide Rev.1.0

 INTRODUCTION

This document describes how to use ILI2xxx Touch panel controller in Linux OS environment.

Document is mostly focused on usage with Raspberry Pi but same approach can be used on any other

Linux OS.

Document requires basic knowledge of Linux operating system, and I2C bus usage on the Linux

platform. It will go through the setup of the hardware and necessary software, integration of the ILITEK

library and simple example which printout the X,Y position of the detected touch to the terminal.

Main components :

• Touch panel with IL2xxx controller

• ZIF breakout board

• 8 wire jumpers (Female-Female)

• USB cable (Type C for board supply)

• Raspberry Pi board with mirco SD card (Raspberrian OS flashed)

© 2020 Riverdi Page 4 of 10 www.riverdi.com

Linux implementation

ILI2XXX Quick Start Guide Rev.1.0

 HARDWARE AND SOFTWARE SETUP

Setup of the Raspberry Pi is not in the scope of this document so we will consider that you already

prepared the Raspberry Pi board and have at least ssh access. It is important to say that console is

enough, meaning graphic interface is not necessary.

• Log into the your Raspberry Pi system

• Enable I2C peripherals on your Raspberry Pi system by executing

sudo raspi-config

◦ Navigate to "Interface Options"

◦ Select I2C

◦ Enable interface

◦ Restart the system and login again

• Install i2c-tools and make to the your Raspberry Pi system by executing

sudo apt-get install i2c-tools cmake

• Connect Touch panel (ILI2xxx) flat cable to the ZIF breakout board

• Connect ZIF breakout board headers to the Raspberry Pi headers

Figure 1. Raspberry Pi Connection

© 2020 Riverdi Page 5 of 10 www.riverdi.com

Linux implementation

ILI2XXX Quick Start Guide Rev.1.0

While cmake is installed to simplify the build, I2C tools is there as tool helpful to probe the devices

connected to the bus. If everything went well I2C address scanning should report ILI2xxx address

available. So execute i2cdetect -y 1 and result should be something like this.

Figure 2. Ilitek address detection

 COMPILE AND RUN DEMO EXAMPLE

Demo application made for this "Getting started" purpose uses simplified version of the original library

made for ILI2xxx, implemented in form of the kernel module. You can download this version of the

library alongside with the demo from ours github repository.

• Unpack the content and place on desired place on your OS.

• Navigate inside unpacked folder and compile demo by executing make.

• (Optionally) Clean up build folder by calling make clean.

If everything went well you should see new binary ilitek_on_raspberry_pi_demo as output of

the compilation inside root folder. Simply run it by executing ./ilitek_on_raspberry_pi_demo

The initial output should be something like this.

Figure 3. Initialization log

After that, each time you touch the panel information about touch position will be logged,

continuously until you release the touch.

Figure 4. Touch log

https://github.com/riverdi/CTP-Ilitek-rapsberry-pi-Demo

© 2020 Riverdi Page 6 of 10 www.riverdi.com

Linux implementation

ILI2XXX Quick Start Guide Rev.1.0

 ADJUST LIBRARY AND DEMO FOR OTHER LINUX PLATFORMS

The library and demo for Linux systems is written according to ANSI-C standard so you should be able

to compile it with any version of the GNU C/C++ compiler. It is depended only on standard GCC libraries

and there should be no portability issues. However this demo is strictly written for the particular

platform and there are some points which should be considered when switching to the other platform.

 SYSTEM INTERFACE

The best way to start are probably easiest functions :

• void ilitek_delay (uint32_t msec)

• void ilitek_sleep (uint32_t msec)

On the Linux systems you should both implement to make delay for provided amount of millisecond,

so we can use Linux <time.h> library for this particular purpose. So implementation might looks like

this.

void ilitek_delay (uint32_t msec)

{

 int ret;

 struct timespec start_time;

 struct timespec curr_time;

 uint32_t start_msec;

 uint32_t curr_msec;

 ret = clock_gettime(CLOCK_REALTIME, &start_time);

 if (ret != 0)

 {

 printf("Error in clock_gettime !\r\n");

 return;

 }

 start_msec =

 (start_time.tv_sec * 1000) + (start_time.tv_nsec / 1000);

 // Block here until msec expire.

 for (;;)

 {

 ret = clock_gettime(CLOCK_REALTIME, &curr_time);

 if (ret != 0)

 {

 printf("Error in clock_gettime !\r\n");

 return;

 }

 curr_msec =

 (curr_time.tv_sec * 1000) + (curr_time.tv_nsec / 1000);

 if ((start_msec + msec) < curr_msec)

 {

 break;

 }

 }

}

© 2020 Riverdi Page 7 of 10 www.riverdi.com

Linux implementation

ILI2XXX Quick Start Guide Rev.1.0

void ilitek_sleep (uint32_t msec)

{

 ilitek_delay(msec);

}

In case of real usage, probably, this is not the best way to implement the delay inside the driver or

program - but we are using it here just for testing purposes so this is kind of the easiest way to get it.

Read current time and block the program until the desired delay expires. Also you can see that sleep

function just wrapped delay inside itself.

The more important point for the Linux OS is the "initialization" of the I2C. Actually this is not real

initialization - this is just setup and the opening of the i2c bus, implementation of the

void ilitek_interface_init(void) in your case might looks like this.

void ilitek_interface_init (void)

{

 // Initialize I2C bus.

 if ((fd = open ("/dev/i2c-1", O_RDWR)) < 0)

 {

 printf("I2C Open error");

 }

 if (ioctl (fd, I2C_SLAVE, 0x41) < 0)

 {

 printf("I2C Slave setup error");

 }

 // Initialize RST.

 // Initialize INT.

 // (Optional) Initialize serial port for printout.

}

As you can see we just have opened the file descriptor - in other cases "/dev/i2c-1" location may

vary so it is necessary to update it depending on the system. Then we have configured the I2C slave

address with ioctl call. We will not use GPIO pins for this demo due to fact that it is not necessary

and might be little bit more complex to do it on Linux OS, so there is not initialization for the GPIOs.

Also we will use standard output and printf to provide readable output, meaning there is nothing

to initialize in relation to that.

 GPIO INTERFACE

As we already said both GPIO pins are not necessary and not used in this demo. You can leave both

functions related to the GPIOs empty.

void ilitek_gpio_reset_set (uint8_t value)

{

}

uint8_t ilitek_gpio_int_get (void)

{

 return 0;

}

© 2020 Riverdi Page 8 of 10 www.riverdi.com

Linux implementation

ILI2XXX Quick Start Guide Rev.1.0

 I2C INTERFACE

There are two functions as interface to the I2C. :

• int ilitek_i2c_read(uint8_t ∗ data, int read_len)

• int ilitek_i2c_rw(uint8_t ∗ cmd, int write_len, int delay, uint8_t ∗
data, int read_len)

Considering the previous code snippet - we have to use same file descriptor to read from the I2C bus

and particular device. So implementation of the read function for the driver might looks like this.

int ilitek_i2c_read(uint8_t * data, int read_len)

{

 if (rdlen != read(fd, data, rdlen))

 {

 return -1;

 }

 return 0;

}

The second function is very similar:

int ilitek_i2c_rw(uint8_t * cmd, int write_len, int delay,

 uint8_t * data, int read_len)

{

 if (wrlen != write(fd, cmd, wrlen))

 {

 return -1;

 }

 if (del > 0)

 {

 ilitek_delay(del);

 }

 if (rdlen != read(fd, data, rdlen))

 {

 return -1;

 }

 return 0;

}

The implementation of the functions will be probably always the same due the fact that there is no

any dependency on the platform stuff here. It is just important to use proper file descriptor.

 SERIAL INTERFACE

As we already said - we will use standard output to provide readable output from the library. So

implementation of the void ilitek_print (const char * fmt, ...) should be nothing

more then forward of the content to the printf. So it might looks like this:

void ilitek_print (const char * fmt, ...)

{

 char str[1024];

 va_list arg;

 va_start(arg, fmt);

© 2020 Riverdi Page 9 of 10 www.riverdi.com

Linux implementation

ILI2XXX Quick Start Guide Rev.1.0

 vsprintf(str, fmt, arg);

 va_end(arg);

 printf(str);

}

 MAIN APPLICATION

When all of the previous functions are done, implementation of the code which should be placed in

main should be quiet simple. An example how it looks like can be found inside main.c.template file.

What is happening there is that first we initialize system and driver and then inside infinite poll the

touch data. Then we just print it out in human readable format to the terminal. If we take a closer look

to the ilitek_read_data_and_report_3XX function call which is called from infinite loop we will

realize that everything happens in there - all readout of existing touch data.

4.5.1 DATA READOUT

The main function for data readout it pretty long - there are lot of internal checks so we will try to

focus just on the main points of interest. Also for better understanding it is important to say that all

volatile data is placed inside struct ilitek_ts_data ilitek_ctx structure. This means that

after each readout function call you can check the content of the structure to get desired information.

This structure is huge, each information which can be read from the controller is placed inside

separated field so we will go just through the most important ones related to touch data readout.

The first operation during touch data read is readout of the status register which carries information

about number of touch points detected, depending on number of points detected the appropriate flag

for each touch index will be set.

ilitek_data->touch_flag[i] = 1;

This means after the functions is executed, we can check touch_flag by index to check number of

touches detected, for example:

int i;

for (i = 0; i < ILITEK_SUPPORT_MAX_POINT; ++i)

{

 if (ilitek_data->touch_flag[i] == 1)

 {

 // Touch on index i is detected.

 }

}

Then for each index where flag is set we will store information about X and Y coordinates inside tp

field. As you can see tp field is also structure so information about X coordinate is stored inside x

field and info about Y coordinate is stored inside y filed. This means that we can use which fields in

combination with touch_flag to get complete info about each detected point, so previous code

snippet might be improved like this:

int i;

int x_coord;

int y_coord;

for (i = 0; i < ILITEK_SUPPORT_MAX_POINT; ++i)

{

 if (ilitek_data->touch_flag[i] == 1)

© 2020 Riverdi Page 10 of 10 www.riverdi.com

Linux implementation

ILI2XXX Quick Start Guide Rev.1.0

 {

 x_coord = ilitek_data->tp[i].x;

 y_coord = ilitek_data→tp[i].y;

 // Do whatever you need to do with (X,Y).

 }

}

 FURTHER STEPS

This was just an basic introduction to the ILI2xxx on Linux platforms. This adopted version of the

original driver implementation is just simplified version which should provide you fast introduction to

the interfacing the ILI2xxx device on the Linux platforms.

The next step is probably considering the original Linux driver which is developed in form of the kernel

module. Also the improvement can be made by introducing the usage of the GPIO pins.

While this approach we used is more suitable for development - the kernel module is more suitable

for real usage. The original library can be downloaded from ours github repository. In case of any

question related to original library and documentation you must contact manufacturer (Ilitek) directly.

https://github.com/riverdi/ilitek_limv5_8_0_0
http://www.ilitek.com/

	REVISION RECORD
	CONTENTS
	1 INTRODUCTION
	2 HARDWARE AND SOFTWARE SETUP
	3 COMPILE AND RUN DEMO EXAMPLE
	4 ADJUST LIBRARY AND DEMO FOR OTHER LINUX PLATFORMS
	4.1 SYSTEM INTERFACE
	4.2 GPIO INTERFACE
	4.3 I2C INTERFACE
	4.4 SERIAL INTERFACE
	4.5 MAIN APPLICATION
	4.5.1 DATA READOUT

	5 FURTHER STEPS

